Random mutagenesis reveals a region important for gating of the yeast K+ channel Ykc1
نویسندگان
چکیده
منابع مشابه
Random mutagenesis reveals a region important for gating of the yeast K+ channel Ykc1.
YKC1 (TOK1, DUK1, YORK) encodes the outwardly rectifying K+ channel of the yeast plasma membrane. Non-targeted mutations of YKC1 were isolated by their ability to completely block proliferation when expressed in yeast. All such mutations examined occurred near the cytoplasmic ends of the transmembrane segments following either of the duplicated P loops, which we termed the 'post-P loop' (PP) re...
متن کاملMutations in the pore regions of the yeast K+ channel YKC1 affect gating by extracellular K+.
The product of the Saccharomyces cerevisiae K+-channel gene YKC1 includes two pore-loop sequences that are thought to form the hydrophilic lining of the pore. Gating of the channel is promoted by membrane depolarization and is regulated by extracellular K+ concentration ([K+]o) both in the yeast and when expressed in Xenopus oocytes. Analysis of the wild-type current now shows that: (i) [K+]o s...
متن کاملYKC1 encodes the depolarization-activated K+ channel in the plasma membrane of yeast.
Our previous patch-clamp studies showed that depolarization activates a K(+)-specific current in the plasma membrane of the budding yeast, Saccharomyces cerevisiae [Gustin et al. (1986) Science 233, 1195-1197]. The Yeast Genome Sequencing Project has now uncovered on the left arm of chromosome X an open reading frame (ORF) that predicts a 77-kDa protein reminiscent of a shaker-like alpha subuni...
متن کاملRandom Mutagenesis Identifies a C-Terminal Region of YopD Important for Yersinia Type III Secretion Function
A common virulence mechanism among bacterial pathogens is the use of specialized secretion systems that deliver virulence proteins through a translocation channel inserted in the host cell membrane. During Yersinia infection, the host recognizes the type III secretion system mounting a pro-inflammatory response. However, soon after they are translocated, the effectors efficiently counteract tha...
متن کاملMutagenesis of the herpesvirus saimiri terminal repeat region reveals important elements for virus production.
Deletion of the terminal repeats (TR) from herpesvirus saimiri (HVS) renders it unable to produce infectious virus or generate plaques. However, a TR-deleted HVS bacterial artificial chromosome can form replication compartments. Complementation of this mutant shows that one copy of the TR, plus the right junction of the genome with the TR, is sufficient for efficient plaque formation and genera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The EMBO Journal
سال: 1997
ISSN: 1460-2075
DOI: 10.1093/emboj/16.16.4817